Duración: 1 HORA Y 30 MINUTOS

Elige entre realizar únicamente los cuatro ejercicios de la **Opción A** o bien realizar únicamente los cuatro ejercicios de la **Opción B**; sin mezclar los de una opción con los de la otra. Cada ejercicio vale 2'5 puntos. **Contesta las preguntas razonando tus conclusiones**; la mera respuesta numérica no vale para obtener la puntuación máxima de cada apartado.

Por favor, escribe de forma ordenada y con letra clara.

Se permite el uso de calculadoras.

Modelo-2-1997 Opción A

Ejercicio 1. Considera la función $f: R \to R$ definida para por la relación $f(x) = \frac{4x^2 + 3x + 4}{x}$

- (a) Halla sus asíntotas.
- (b) Determina sus extremos locales.
- (c) Dibuja la gráfica de f indicando su posición respecto de las asíntotas.

Ejercicio 2. (a) Dibuja la región limitada por la recta de ecuación y = 3 y las gráficas de las funciones f y g definidas en todo R por $f(x) = 3x^2$ y $g(x) = 1 - x^2$.

(b) Calcula el área de dicha región.

Ejercicio 3. Resuelve la ecuación:
$$\begin{vmatrix} 2x-1 & 3x & x-2 \\ 2x+1 & x & 2x+1 \\ 2x-1 & 3x & 3x-2 \end{vmatrix} = 0$$
.

Ejercicio 4.- Halla la ecuación del plano que pasa por el punto A = (1, 1, 2) y es paralelo a las rectas r y s

dadas por:
$$r \equiv \frac{x-2}{-1} = \frac{y}{1} = \frac{z+1}{2}$$
 y $s \equiv \begin{cases} 2x-y+z=-2 \\ -x+y+3z=1 \end{cases}$

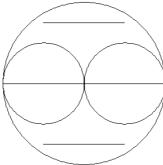
Opción B

Ejercicio 1. (a) Describe el método de integración por partes.

(b) Calcula
$$\int_{1}^{e} [Ln(x)]^{2} dx$$

(Nota: Ln(x) es el logaritmo neperiano de x.)

Ejercicio 2. Dada una circunferencia de radio r, se divide uno de sus diámetros en dos partes que se toman como diámetros de dos circunferencias tangentes interiores a la circunferencia dada. ¿Qué longitud debe tener cada uno de estos diámetros para que sea máxima el área de la región comprendida entre las circunferencias interiores y la exterior (la región rayada en la figura)



Ejercicio 3. (a) Halla el punto C que es la proyección ortogonal del punto B = (2, 1, 1) sobre el plano

 Π : 2x+y-2z = -6 (b) Halla el punto A que esté sobre el eje OX y tal que el área del triángulo ABC valga 6. ¡ Cuantas soluciones existen?

soluciones existen? **Ejercicio 4.** Escribe cuando sea posible, sistemas de ecuaciones que respondan a las características siguientes:

- (a) Un sistema de tres ecuaciones con dos incógnitas que tenga infinitas soluciones...
- (b) Un sistema de dos ecuaciones con tres incógnitas que sea compatible y determinado.
- (c) Un sistema de tres ecuaciones con tres incógnitas que no tenga ninguna solución.
- (b) Un sistema de tres ecuaciones con tres incógnitas que tenga solución única.

Razona en cada caso, tu respuesta